Grade 11/12 Math Circles
 March 20, 2024

Primality Testing and Integer Factorization - Problem Solutions

1. Determine whether 161 is prime, and if not, factor it.

Solution: If we trial divide by the first few primes, we notice that $161=7 \times 23$, which is composite.
2. Calculate the prime factorization of 1001.

Solution: If we trial divide by the first few primes, we notice that $1001=7 \times 11 \times 13$.
3. Prove that if a divides n and $\sqrt{n} \leq a<n$, then there exists b which divides n and satisfies $1<b \leq \sqrt{n}$.

Solution: Let $b=n / a$. Since $a<n, b>1$, and since $a \geq \sqrt{n}, b \leq n / \sqrt{n}=\sqrt{n}$.
4. Determine whether 1739 and 1741 are prime, and if not, factor them.

Solution: We only need to trial divide by the primes up to $\sqrt{1741} \approx 42$. There are only 13 of them, so it's not too bad to try them all. We get that $1739=37 \times 47$, and 1741 is prime.
5. Find the prime factorization of 344929 .

Solution: We must trial divide by the primes up to $\sqrt{344929} \approx 587$. This looks daunting, but we quickly notice that $344929=13 \times 26533$, then that $26533=13 \times 2041$, then that $2014=13 \times 157$. Finally, since $157<13^{2}$, it must be prime, so the desired factorization is $344929=13^{3} \times 157$.
6. Using the prime number theorem, approximately how many primes are less than 100 ?

Solution: We have $\pi(100) \approx \frac{100}{\ln (100)} \approx 22$. (The actual number is 25).
7. Suggest an algorithm to calculate the primes between two positive real numbers x and y (for example, $x=100$ and $y=100$). Notice that the Sieve of Eratosthenes would not work without modification, since 2 would never be detected as a prime and thus even numbers would not be struck out.

Solution: The Sieve of Eratosthenes works for $x=0$ because it calculates all primes up to \sqrt{y} as part of the process and sieves out their multiples. If $x \neq 0$, we could use a regular sieve to get the list of primes up to \sqrt{y}, then strike out just their multiples in the range x to y. This will indeed produce the list of primes between x and y, since every composite number $\leq y$ has a prime factor $\leq \sqrt{y}$. (This is an open-ended question and other algorithms may work).
8. Find a factor of 999991.

Solution: Notice that $999991=1000^{2}-3^{2}=(1000-3)(1000+3)=997 \times 1003$.
9. (Challenge) Find a factor of 2146681.

Solution: Notice that $2146681+2^{3}=129^{3}$. We have the identity $x^{3}-y^{3}=(x-y)\left(x^{2}+\right.$ $x y+y^{2}$), upon which we obtain the factor $129-2=127$.

